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Abstract
We show that the Stokes phenomenon is related to a boundary-value problem
in two dimensions: for a large class of functions and near the Stokes
lines, the subdominant multiplier satisfies a two-dimensional boundary-value
problem of convection–diffusion type with discontinuous Dirichlet conditions
at the boundary. The solution of this problem is approximated by an error
function of a certain combination of the polar variables of the plane which
measures the distance to the Stokes line. Then, we offer a different and very
simple explanation of the smoothing of the Stokes phenomenon showing the
universality of the error function as the smoothing factor.

PACS numbers: 02.30.Mr, 02.30.Gp, 02.30.Jr
Mathematics Subject Classification: 41A60, 30B40, 46F10

1. Introduction and development

Consider the following asymptotic approximation of the Bessel function Kµ(z) as z → ∞
[[14], chapter 6, pp 236, 237]:

kµ(z) ∼ z−1/2 e−z

∞∑
n=0

An(µ)

zn
, −5π

2
< arg z − π < δ,

kµ(z) ∼ z−1/2 e−z

∞∑
n=0

An(µ)

zn
+ z−1/2 ez

∞∑
n=0

Bn(µ)

zn
, −δ < arg z − π <

3π

2
,

with 0 < δ < π/2, A0(µ) = 1, B0(µ) = 2i cos(πµ) and, for n = 1, 2, 3, . . .,

An(µ) = cos(πµ)√
2π

�(n + µ + 1/2)�(n − µ + 1/2)

(−2)nn!
, Bn(µ) = 2i cos(πµ)(−1)nAn(µ).

These two asymptotic expansions have a common region of validity −δ < arg z − π < δ,
where they differ by the inclusion of the second series in the second expansion. This apparent
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Figure 1. The case m = 1, S1 = {z,−θ1 < arg z − π < θ2}. The first approximation in (1) is
valid in the sector π − θ1 < arg z < π + δ, whereas the second approximation is valid in the sector
π − δ < arg z < π + θ2. The sector D1 is the shaded region.

contradiction is the origin of the Stokes phenomenon that, in general, may be stated as follows.
Consider a complex function w(z) analytic in a sector of the complex z plane defined by
Sm = {

z,−θ1 < arg z − π
m

< θ2
}
, where θ1, θ2 > 0 and m is a positive integer number (see

figure 1 for the case m = 1). Suppose that, when |z| → ∞,

w(z) ∼ za e−αzm

∞∑
n=0

an

zn
and w(z) ∼ za e−αzm

∞∑
n=0

an

zn
+ zb eβzm

∞∑
n=0

bn

zn
.

Or, equivalently,

z−b eαzm

w(z) ∼ za−b

∞∑
n=0

an

zn
and z−b eαzm

w(z) ∼ za−b

∞∑
n=0

an

zn
+ e(α+β)zm

∞∑
n=0

bn

zn
.

(1)

The first expansion in (1) is uniformly valid in −θ1 < arg z − π
m

< δ and the second one
in −δ < arg z − π

m
< θ2. In these formulae a and b are rational numbers, α, β � 0 with

αβ �= 0, δ > 0 with δ < θ1, δ < θ2 and an and bn are sequences of complex numbers. The two
asymptotic expansions in (1) have a common region of validity Dm = {

z,
∣∣ arg z − π

m

∣∣ < δ
}

(see figure 1), where they differ by the inclusion of the second series in the second expansion;
but in the Poincaré sense, the additional term in the second expansion is negligible. It may
become ‘visible’ when, for z in the middle of the sector Dm (arg z � π/m and zm � −|z|m), we
cut the dominant series at an integer n = N in such a way that the last term of that dominant
series, which is of the order O(za−b−N), is of the same size as the dominant term of the
subdominant series, which is of the order O

(
e(α+β)zm)

. This happens when, for arg z � π/m,
we have that |z|a−b−N � e−(α+β)|z|m , that is, when N = �a − b + (α + β)|z|m/ log |z|�. Then,
the Stokes multiplier U is defined by the coefficient that appears in front of the subdominant
term when z−b eαzm

w(z) is approximated up to the order O
(
e(α+β)zm)

in Dm by choosing
N = �a − b + (α + β)|z|m/log |z|� [2, 13, 14 (equation (6.1.10)), 15]:

z−b eαzm

w(z) = za−b

N∑
n=0

an

zn
+ iU e(α+β)zm

. (2)

In the above example w(z) = Kµ(z) we have a = b = −1/2,m = 1, α = β = 1 and
N = �2|z|/log |z|�. Observe that the first term on the right-hand side above is of the order
O(za−b) uniformly in arg z. The non-uniform behaviour in arg z is concentrated in the second
term containing the factor U.
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Since Stokes discovered this phenomenon [16–18], the traditional view has been that a
discontinuous change in the constant multiplier U associated with subdominant asymptotic
expansion takes place when we cross a Stokes line: U = 0 for π

m
− δ < arg z < π

m
and

U = 1 for π
m

< arg z < π
m

+ δ. This discontinuous nature of the multiplier U together with
the inherent vagueness associated with the precise location of its jumps (Stokes lines) has
enveloped the Stokes phenomenon with a certain air of mystery.

In 1989, Berry removed some of that mysterious air. He showed (formally) that the
change in the multiplier U is not abrupt, but smooth, and is universally described by an error
function [1, 2]. For a wide class of functions, the functional form of this rapid but smooth
transition is found to possess a universal structure approximated by an error function. Since
Berry’s work, several mathematicians have offered different rigorous proofs of Berry’s theory.
The first one was proposed by Olver in [10, 11], who used uniform exponentially improved
asymptotic expansions for functions defined by Laplace integrals. A different proof was
proposed by Boyd [4] using the previous results of Jones [5]. He developed an exponentially
improved asymptotic theory for functions defined by a Stieltjes transform. A different proof
was introduced by Paris [12] considering functions defined by Mellin–Barnes integrals and
constructing uniform exponentially improved asymptotic expansions from these integrals.
Chapter 6 of [14] contains a good introduction to the Stokes phenomenon as well as several
illustrative examples. The survey paper [13] contains a more detailed explanation of the
history of the Stokes phenomenon and its explanation.

There are many other interesting papers related to the Stokes phenomenon where several
philosophic-mathematical explanations of the phenomenon are argued. For example, in [3],
asymptotic superfactorial series are considered which, as well as factorial series, exhibit the
Stokes phenomenon. The argument based on Borel summation works for factorial series [1],
but not for superfactorial series. A modification of that argument is given in [3] which also
shows the persistence of the Stokes phenomenon in superfactorial series. In [9], the Stokes
phenomenon is interpreted via the method of matched asymptotic expansions: a genuine
method of singularly perturbed partial differential equations. That interpretation, as well as
the one given in this paper, relates the Stokes phenomenon with a partial differential equation.
In [8], a new representation of a function, different from the standard expansion in asymptotic
series, is introduced. It is argued there that the Stokes phenomenon comes up naturally from
that representation. In [7, 12], it is argued that the origin of the phenomenon lies on the fact
that we are approximating an analytic function w(z) by non-analytic multivalued functions
za ezm

and zb e−zm

.
From definition (2) we see that the Stokes multiplier U(z) depends on N and N

depends on |z|. At certain values of r = |z|, when a − b + (α + β)rm/log r ∈ N, it happens
that N → N + 1 and then U(z) changes abruptly. Let us denote those special values of r
by rk, k = 0, 1, 2, . . . . If w(z) is an analytic function of z in Dm then, from this definition,
the Stokes multiplier U(z) is also an analytic function of z in every subdomain Dm,k =
Dm

⋂ {rk < |z| < rk+1}.
The following argument offers a new and simple derivation of the smoothing of the Stokes

phenomenon. In the following, we denote arg z = θ . For the sake of clearness, consider at
this moment m = 1 in formula (2):

z−b eαzw(z) = za−b

N∑
n=0

an

zn
+ iU e(α+β)z. (3)

We want to approximate U by an alternative function (that we also denote by U) such that (i)
it is real in the sector D1 and (ii) far away from the origin (large r), U = 0 at one side of
that sector (at θ = π − δ) and U = 1 at the other side (at θ = π + δ). Applying the Laplace
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Figure 2. Approximate solution (6) of the boundary-value problem (5) in the sector D1, that is,
approximate form of the Stokes’ multiplier U in that sector.

(This figure is in colour only in the electronic version)

operator to the imaginary part of the equality (3) and using (i) and � Re w = � Im w = 0
(w is analytic) we find that U satisfies a convection–diffusion equation for large r = |z|:

− 1

2(α + β)
�U + −→v · −→∇ U = 0, r → ∞, −δ < θ − π < δ, (4)

with a convection vector −→v ≡ (−1, tan[(α + β)y]). On the other hand, from (ii), U must
change rapidly from the value U = 0 to U = 1 when crossing the Stokes line θ = π in the
positive sense. This has two consequences. First, we can consider a small δ and approximate
tan[(α + β)y] � 0, that is, v � (−1, 0). Second, equation (4) must be supplemented with
the boundary conditions U(r, π − δ) = 0 and U(r, π + δ) = 1. Then, we are left with the
boundary-value problem:{

�U + 2(α + β)Ux = 0 in D1,

U(r, π − δ) = 0, U(r, π + δ) = 1.
(5)

This is a convection–diffusion boundary-value problem defined in a sector-shaped domain of
angular width 2δ with discontinuous Dirichlet datum at the corner of the sector: r = 0. This
problem has been studied in [6], where it is shown that, when supplemented with the radiation
condition: U(r, θ) = o(r−1/2 er[1−cos θ]) as r → ∞ and π − δ < θ < π + δ, the problem
has a unique solution. That unique solution is approximated for large r (large |z|) by an error
function [6]:

U(r, θ) ∼ 1

2
+

1

2

[√
2(α + β)r sin

(
θ − π

2

)]
, (6)

as r → ∞ in the sector D1. In fact, this function satisfies exactly the equation
U + 2(α + β)Ux = 0, and for large r it satisfies approximately the boundary condition:
U(r, π − δ) = 0, U(r, π + δ) = 1 (see figure 2).

The solution of a convection boundary-value problem of the form {−→v · −→∇ U = 0 in a
sector D1 and U |∂D1 = U0} is constant along straight lines parallel to the convection vector−→v = (v1, v2). More precisely, U(x, y) = U0(x0, y0), where (x0, y0) is a point of ∂D1

verifying x−x0
v1

= y−y0

v2
. That is, the convection vector −→v pulls the boundary-value U0 inside

the domain D1. When we add a term �U to the equation (and supplement it with a radiation
condition to assure a unique solution), the problem becomes an elliptic problem of convection–
diffusion type: {−�U + −→v · −→∇ U = 0 in D1 and U |∂D1 = U0}, like problem (5). In problem
(5), U0 is discontinuous at r = 0 and then the convection vector −→v pulls that discontinuity
inside D1. But the solution of the elliptic problem (5) is continuous in D1; the diffusion term
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�U smoothes that discontinuity, transforming the discontinuity of the convection problem in
a fast (but smooth) transition between the value U = 0 at θ = π − δ to the value U = 1 at
θ = π + δ.

The analysis of the case m �= 1 is similar. Replace z by z1/m (and then U(r, θ) by
U(r1/m, θ/m)) in (2). Instead of (3) we have

z−b/m eαzw(z1/m) = z(a−b)/m

N∑
n=0

an

zn/m
+ iU(r1/m, θ/m) e(α+β)z.

From here, the discussion for U(r1/m, θ/m) is the same as the preceding discussion elaborated
for U(r, θ) from (3). Therefore, for large r, U(r1/m, θ/m) is approximated by the right-hand
side of (6) and then, for z = r eiθ ∈ Dm,

U(r, θ) ∼ 1

2
+

1

2

[√
2(α + β)rm sin

(
mθ − π

2

)]
as r → ∞. (7)

This is the approximation for the Stokes multiplier U found first time by Berry and subsequently
proved more rigorously by Olver, Boyd or Paris using different techniques and applied to
several examples.

2. Final remarks

From the definition of the Stokes multiplier U in equation (2) we see that if w(z) is an
analytic function of z in Dm, then U(z) is also an analytic function of z in Dm,k . Then both
Re U and Im U must satisfy a Poisson equation: � Re U = � Im U = 0 in Dm,k . When we
are trying to approximate U(z) for large |z|, we set Im U ∼ 0 and U ∼ Re U . With this
approximation we destroy the analyticity of U because the imaginary part of any analytic
function of a complex variable z is not the null function unless it is a constant function. Then,
it is no longer true that �U = � Re U = 0, but we have shown that the Stokes multiplier
U satisfies approximately a convection–diffusion boundary-value problem with discontinuous
Dirichlet datum (5). The solution of this problem is approximated by an error function with
an argument that measures the distance to the Stokes line and produces a rapid variation of
that error function from 0 to 1 when crossing that Stokes line (6). This is a well-known result
shown by other authors using different techniques. In this paper, we have related the Stokes
phenomenon, which is a genuine problem of analytic functions and asymptotic expansions
to a boundary-value problem. Under this view, (i) the Poisson equation satisfied by the
real and imaginary parts of the function w and its asymptotic series in (2) translates into a
convection–diffusion equation satisfied by the Stokes multiplier U (see (4)), (ii) the Stokes
line is just the line defined by the convection vector −→v of (4) and (iii) the limit values U = 0
and U = 1 are the boundary conditions (see (5)). Then, both problems have the same
approximate solution given by an error function with the appropriate argument, an argument
that measures the distance to the Stokes line or the distance to the line defined by the convection
vector −→v .
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